Almost set-theoretic complete intersections in characteristic zero

نویسنده

  • Margherita Barile
چکیده

We present a class of toric varieties V which, over any algebraically closed field of characteristic zero, are defined by codim V +1 binomial equations .

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

SET-THEORETIC COMPLETE INTERSECTIONS IN CHARACTERISTIC p

We describe a class of toric varieties which are set-theoretic complete intersections only over fields of one positive characteristic p.

متن کامل

Space Curves as Complete Intersections

This is an expository account based mainly on an article by Jack Ohm titled “Space curves as ideal-theoretic intersections”. It also gives a proof of the fact that smooth space curves can be realized as set-theoretic complete intersections. The penultimate section proves the theorem of Cowsik and Nori : Curves in affine n-space of characteristic p are set-theoretic complete intersection.

متن کامل

On toric varieties which are almost set-theoretic complete intersections

We describe a class of affine toric varieties V that are set-theoretically minimally defined by codimV + 1 binomial equations over fields of any characteristic.

متن کامل

On Binomial Set-Theoretic Complete Intersections in Characteristic p

Using arithmetic conditions on affine semigroups we prove that for a simplicial toric variety of codimension 2 the property of being a set-theoretic complete intersection on binomials in characteristic p holds either for all primes p, or for no prime p, or for exactly one prime p.

متن کامل

The Stanley-Reisner ideals of polygons as set-theoretic complete intersections

We show that the Stanley-Reisner ideal of the one-dimensional simplicial complex whose diagram is an n-gon is always a set-theoretic complete intersection in any positive characteristic.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005